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1 Introduction

In this article we address the following issues related to supersymmetry breaking, moduli

stabilisation, de Sitter vacua and moduli inflation in string compactifications:
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1. Despite the recent great success on moduli stabilisation in string theory, the value

of the vacuum energy after moduli stabilisation naturally corresponds to anti de

Sitter space. This is understandable from the effective field theory point of view due

to the fact that the scalar potential of N = 1 supergravity is not positive definite

and therefore the local minima tend to be at negative values of the vacuum energy.

The original uplifting mechanism to de Sitter space proposed in reference [1] by

introducing anti D3 branes requires the explicit breaking of supersymmetry in the

effective field theory. Further uplifting mechanisms have been proposed [2, 3]. Despite

partial success, there is not at the moment a compelling mechanism for de Sitter

uplifting. The consideration of D-terms as proposed in [2] has to be implemented

in concrete setups since, even though D-terms add a positive definite contribution

to the effective potential, it is known that if the F-terms vanish then D-terms also

vanish [4]. Concrete examples have been provided in field theoretical [5, 6] and string

inspired models [7, 8].

2. In the past two years there has been a large amount of work on the natural ap-

pearance of metastable supersymmetry breaking vacua in global supersymmetry and

in particular, the breakdown of global supersymmetry can be achieved significantly

simpler. This is the ISS scenario [9]. Some realisations of this mechanism in string

models have also been obtained [10]. Nevertheless, there is an implicit assumption

in this mechanism, i.e. that the gauge coupling of the corresponding gauge theory is

constant and therefore the dynamical non-perturbative scale Λ ∼ e−a/g2

appears as a

constant in the effective action. In string theory, however, the gauge coupling is field

dependent 1/g2 ∼ ReT with T the complex scalar component of a chiral superfield

corresponding to a closed string modulus. Therefore the exponential dependence of Λ

would tend to give a runaway behaviour to the scalar potential as a function of ReT .

3. In the past few years several string theory mechanisms for cosmological inflation

have been proposed. The inflaton field corresponds to either an open string mode

as in brane-antibrane [11], D3/D7 [12], monodromy [13] or Wilson line [14] infla-

tion or a closed string modulus as in Racetrack [15, 16], Kähler moduli [17, 18],

monodromy [19] or fibre [20] inflation. In most of these scenarios, the realisation of

inflation depends crucially on the uplifting mechanism for de Sitter moduli stabili-

sation. Therefore it tends to go beyond the N = 1 supersymmetric effective action

if the uplifting mechanism is the presence of anti D3 branes as in KKLT. It would

be desirable to find a string inflation mechanism derived from a fully N = 1 super-

symmetric action. Recently in [21], general constraints on this possibility have been

found, substantially restricting the class of supersymmetric models that can give rise

to inflation. It is a challenge to find a concrete stringy realisation of inflation that

satisfies those constraints.

We address these three issues by considering a class of models that can be realised in

terms of D-brane orientifold constructions in fluxed Calabi-Yau manifolds. In particular

we consider a system of magnetised D7 branes with chiral matter fields. The existence
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of anomalous U(1)’s induces Fayet-Iliopoulos D-terms. Fluxes of RR form give rise to a

tunable constant term in the superpotential and also the presence of matter fields provides

a non-perturbative superpotential. Depending on the number of D-branes this can be

realised in the electric or magnetic phase of SQCD. The electric phase was considered

in [7]. Here we will concentrate on the magnetic phase. This makes contact with the ISS

models [9] and then naturally addresses the issue of the runaway behaviour of the scalar

potential. We find that in the simplest case of one single Kähler modulus, instead of a

metastable vacuum, the potential runs away in the direction of the modulus corresponding

to the size of the 4-cycle wrapped by the magnetised D7 branes, ruining the interesting

properties of the ISS mechanism. However, once we have several Kähler moduli, the

situation changes drastically. We find minima of the scalar potential at finite values of

the fields with supersymmetry broken as in the ISS mechanism. Furthermore, depending

on the values of the free parameters, the minima correspond to either anti de Sitter or

de Sitter spaces. In the latter case, it provides a natural uplifting mechanism for moduli

stabilisation, addressing also the first issue mentioned above.

Even though the presence of matter fields and D-terms changes the structure of the

scalar potential very much, we find remarkably that, once the matter fields are integrated

out, the scalar potential for moduli fields ends up to be very similar, but not identical, to

the one found in [22, 23] and provides a new realisation of the LARGE volume scenario of

moduli stabilisation.

Due to the similarity with the original LARGE volume scenario, we derive the struc-

ture of soft supersymmetry breaking terms and compare with previous results, we then

revisit the Kähler moduli and fibre inflation scenario in our setup and find that they are

also naturally realised, therefore providing a pure N = 1 realisation of these inflationary

scenarios.

2 The ISS model and its embedding into string theory

We want to discuss the vacuum structure of the magnetic dual within the Seiberg duality

setup of SQCD which arises in the range NC < NF < 3/2NC . As commonly known in this

phase of SQCD there exists a dual description of the low-energy field theory in terms of

an infrared-free modified version of SQCD, the so-called free magnetic dual description. It

is characterised by the meson fields Φ, quarks q and anti-quarks p which transform under

the following symmetry groups:

SU(NF − NC) SU(NF )L SU(NF )R U(1)B U(1)A U(1)R
q � � 1 1 1 0

p �̄ 1 �̄ −1 1 0

Φ 1 �̄ � 0 −2 2

(2.1)

where the only gauge symmetry is the SU(NF − NC) symmetry. The Kähler potential is

taken to be canonical and looks like

K = |q|2 + |p|2 + |Φ|2 . (2.2)
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q p ρ Φ eaT

U(1) −1/2 −1/2 −1 2 1

Table 1. U(1)A charges of ISS-fields including the charge for the dynamical scale.

In order to obtain dynamical SUSY breaking one introduces a mass term. Hence the most

general invariant superpotential we can write down is

W = Λ
qΦp

µ
+ ΛmΦ , (2.3)

where m denotes the mass parameter of our theory, Λ the dynamical scale of our theory,

and µ is another parameter that is determined by the duality relations. In the above

equations and in the whole article we omit indices where possible. Please note that the

scale Λ has to be introduced due to dimensional requirements.

The metastable vacuum solution is given by Φ = 0 and p = q = i
√

µm. A derivation

can be found in [24]. The mass term explicitly breaks the U(1)A global symmetry.

There have been several realisations of the ISS scenario within string theory in terms

of different brane configurations [10]. Here we are more interested in capturing the main

ingredients that a string theory realisation will add to this scenario, namely the fact that

the parameters m and Λ have to be dynamical variables. In particular Λ in string theory

having a non-perturbative origin is of the form Λ ∼ e−aT with T a closed string modulus.

One simple explicit realisation is the magnetic version of the case considered in [7]. The

basic setup is an orientifold model consisting of a stack with NC +1 branes, from which one

has a non-vanishing magnetic flux leading to U(Nc)×U(1) gauge theory. The open strings

going from the stack of Nc branes to the magnetised one are the elementary chiral fields Q.

The anti-chiral fields Q̃ have their end-points in the stack of Nc branes and the orientifold

image of the magnetised brane, whereas the fields ρ with endpoints in both images of the

magnetised brane are singlets under the non-abelian group but charged under the U(1).

The effective field theory in the electric phase (NF < Nc) was studied in detail in [7].

Here we will consider the magnetic phase appropriate for Nc < NF < 3Nc/2 for which

instead of Q, Q̃ the fundamental fields are the dual fields which we denote q, p and the

meson-like field Φ . The singlet field ρ will play the role of the mass parameter. Since

generically the U(1) is anomalous, the modulus T whose real part is the inverse gauge

coupling is also charged under the U(1). The U(1) charges are given in table 1.

The effective field theory will be determined by the superpotential W , the gauge kinetic

function f and Kähler potential K as follows: the gauge kinetic function for the gauge fields

on the relevant D7 brane is at leading order f = Ts, where Ts is the Kähler modulus whose

real part is τs. The superpotential is of the form

W = W0 + Wnp (2.4)

with W0 a flux induced superpotential which is a constant after fixing the complex structure

moduli and the non-perturbative superpotential is taken to be of the moduli dependent

– 4 –
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ISS form:1

Wnp = αe−aTs

(

pΦq

µ
+ Φρ

)

, (2.5)

Here α, a, µ are constants. The Kähler potential is

K = −2 log (V + ξ) + Kmatter , (2.6)

where V is the volume written in terms of the Kähler moduli τa and ξ corresponds to the

leading order α′-corrections. The chiral matter Kähler potential is only known in a small

field expansion as a function of the Kähler moduli, with the complex structure dependence

unknown, however this is enough for our purposes here. From the analysis in [25] we

can write:

Kmatter =
τn
s

V2/3

(

|Φ|2 + |ρ|2 + |q|2 + |p|2
)

, (2.7)

where n is the modular weight. We can then ask how the structure of the vacuum for

the ISS scenario is modified once the moduli dependence of the superpotential and Kähler

potential are included.

3 The one-modulus case

We first consider the simplest case of a one Kähler modulus Calabi-Yau with T = τ + ib,

where τ denotes the Einstein frame volume of the 4-cycle X and b =
∫

X C4. This is similar

to the setup presented by Nakayama et al. [26] and is considered as a stabilisation in the

spirit of KKLT [1]. After discussing the setup, we will show why it is not possible to

stabilise the Kähler moduli and brane moduli in a viable regime.

The Kähler potential takes the simple form (here the explicit dependence on gs and

MP is included since they are important for the numerical estimates):

K = −2M2
P log

(

V +
ξ

g
3/2
s

)

+
1

(gsτ)n
(

|Φ|2 + |ρ|2 + |q|2 + |p|2
)

, (3.1)

where we kept the modulus weight general and included the leading order α′−corrections.

The volume simply is assumed to be V = τ
3/2
1 and is in the Einstein frame. The matter

fields have mass dimension 1. The superpotential becomes

W = g3/2
s M3

P W0 + MP g
4

3
s e−aT α

(

pΦq

µ
+ ρΦ

)

. (3.2)

We can now calculate the D-term potential for the anomalous U(1) with the previously

discussed charge assignments. Setting gs = MP = 1, for simplicity of notation, the D-term

potential becomes:

VD =
1

2τ

(

−|ρ|2 − 1
2(|q|2 + |p|2) + 2|Φ|2

τn
+

1

a

( −2
√

τ

3(ξ + τ3/2)

−n
|ρ|2 + |p|2 + |q|2 + |Φ|2

2τn+1

))2

, (3.3)

1A full string theory derivation of this non-perturbative superpotential is not yet available (see [26] for

a previous discussion of this system).
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The F-term potential is calculated from the standard supergravity formula

VF = e
K

M2
P

(

DiWDj̄W̄K−1
ij̄

− 3
|W |2
M2

P

)

. (3.4)

with DiW = ∂iW + W∂iK/M2
P . If we assume no implicit dependence of the matter fields

on the volume, the leading order contributions to the F-term potential are given by:

eK ∼ 1
(

τ3/2 + ξ
)2 , (3.5)

∂W∂W̄K−1 ∼
(

4

3
τ2 − 4nτ2−n

9

)

a2e−2aτα2

∣

∣

∣

∣

pΦq

µ
+ ρΦ

∣

∣

∣

∣

2

for n > 0 , (3.6)

W∂W∂K̄K−1 + c.c. ∼ 4W0aα τRe

(

e−aT

(

pΦq

µ
+ ρΦ

))

, (3.7)

|W |2∂K∂K̄K−1 ∼ |W0|2
(

3 +
3ξ

2τ3/2
+ (1 − n)

|p|2 + |q|2 + |ρ|2 + |Φ|2
τn

)

. (3.8)

Bearing in mind that the flux parameter W0 has to be exponentially small in KKLT-like

setups, the key observation for the following discussion is the fact that we have got a

hierarchy between the D-term potential and the F-term potential, simply since the F-term

potential is exponentially suppressed and the D-term potential is not. Therefore the D-

term potential has to vanish almost exactly, that is it should vanish up to the exponential

suppression of the F-term potential.

Because of the D-term dominance, we are required to address a completely different

stabilisation procedure compared to the global field theory setup of ISS. It is actually not

possible to integrate out the fields at the minimum of the global SUSY model.

The multi-field minimisation process can be simplified (as in the global case) by noting

that the D-term potential arising from the SU(NF − NC) gauge theory can be minimised

by simply requiring the VEV of both type of fields q and p to be the same, since:

V
SU(NF−NC)
D =

g2

2

∑

A

(

Tr q†TAq − Tr pTAp†
)2

, (3.9)

where TA denotes the generator of the fundamental representation of SU(NF − NC). It

can further be seen that the minimum corresponds when both vanish q = p = 0.2 Since

the D-term is dominant the remaining matter fields are related by a condition of the form

|ρ|2 ∼ |Φ|2 − b, where b is determined by the leading order FI term. This reduces the

potential as a function of, say, |Φ| and τ . As expected we do not find a minimum for large

values of τ where the potential shows the standard runaway behaviour as illustrated in the

figure 1 below.

For small values of τ local minima can be found, but in a regime that does not justify

keeping only the leading order corrections to K [26].

2See appendix C for a detailed discussion.
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Figure 1. This plot shows the F-term potential in dependence of the Kähler modulus τ and the

remaining matter degree of freedom Φ. We display small values of Φ in order to show the reader

the runaway behaviour, which is clearly shown in the picture. Keeping Φ constant would give the

typical KKLT situation.

4 The two-moduli case

Since the one-modulus case leads naturally to the runaway behaviour, it is tempting to

conclude that string theory realisations of the ISS mechanism do not have a metastable

state but a runaway potential. We will now explore the Swiss cheese, two-moduli case

which has proven to lead to qualitatively different vacuum structure in the LARGE volume

scenario of moduli stabilisation and reconsider moduli stabilisation in our set-up.

We will then consider the geometry of the Calabi-Yau defined as the surface in projec-

tive space P[1,1,1,6,9] where the volume is given by

V = τ
3/2
1 − τ

3/2
2 , (4.1)

where τ1 denotes the large 4-cycle and τ2 the small one. Then our stringy setup is given by:

K = −2M2
P log

(

τ
3/2
1 − τ

3/2
2 +

ξ

g
3/2
s

)

+
gn
s τn

2

gsτ1
(|p|2 + |q|2 + |ρ|2 + |Φ|2) , (4.2)

W = M3
P g3/2

s W0 + αMP g1/2+n
s e−aT2

(

pΦq

µ
+ Φρ

)

. (4.3)

In the following we will use the charge assignment shown in table 2.
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q p ρ Φ eaT2

U(1) 1 1 2 −1 1

Table 2. Charges under U(1) symmetry used from now on.

That is the D7 branes are wrapping the small four-cycle and then it is T2 that gets

charged under U(1) and not T1. Then the D-term potential becomes

VD =
gs

2τ2

[

2|ρ|2τn
2

g1−n
s τ1

+
(|q|2 + |p|2)τn

2

g1−n
s τ1

− |Φ|2τn
2

g1−n
s τ1

+

+
1

a









3M2
P

√
τ2

2

(

V + ξ

g
3/2
s

) +
(|ρ|2 + |p|2 + |q|2 + |Φ|2)nτn−1

2

2g1−n
s τ1

















2

,

where the overall gs arises due to the transformation from string to Einstein frame. In

general there are two possible charge assignments; one is displayed above, and the other

interchanges the charges ρ and Φ, meaning that both fields are changing their role in the

D-term stabilisation.

The F-term potential is given by the usual supergravity formula (divided by g2
s which

arises by integrating out the dilaton dependence)

VF =
1

g2
s

e
K

M2
P

(

DiWDj̄W̄Kij̄ − 3
|W |2
M2

P

)

(4.4)

=
e

K

M2
P

g2
s

(

∂iW∂j̄W̄Kij̄+∂iW∂j̄K̄Kij̄ W̄

M2
P

+
W

M2
P

∂iK∂j̄W̄Kij̄+
|W |2
M4

P

∂iK∂j̄K̄Kij̄−3
|W |2
M2

P

)

,

where the indices run over the two Kähler moduli T1, T2 and matter fields p, q,Φ.

4.1 Strategy

Our aim is now to find a minimum of the whole potential at large volume to guarantee

stability towards unknown higher order corrections. Therefore we should always keep track

of the power dependence in τ1 which corresponds directly to the power suppression by the

volume. The results presented are only reliable up to some order in the volume suppression.

Let us start by emphasising the following points: We can see that the D-term potential

is suppressed by 1/τ2
1 whereas the F-term potential is at least suppressed by 1/τ3

1 . This

directly implies that the D-term contribution is a priori leading compared to the F-term

potential and hence the global SUSY analysis of ISS will be modified. Also, minimisation

with respect to the matter fields will lead to a moduli dependence of their VEVs.

Minimising the whole potential analytically is not possible due to the complexity of

the system corresponding to a potential as a function of six complex fields. Instead, we

will use the suppression with respect to the volume of every single term as a natural order

criterion, since this allows us to discard various higher order contributions. Our approach

can be summarised as follows:

– 8 –
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1. The first step of our minimisation procedure will be to find the dependence of the

matter fields (e.g. χ) on the large Kähler modulus, at leading order, writing χ = χ̃/Vm

and determine m for each matter field χ, still not fixing the matter fields completely

(leaving χ̃ still unfixed).

2. After that we can minimise the matter fields completely by fixing χ̃. We then end up

with a scenario which looks roughly like the original LARGE volume scenario with

an additional uplifting D-term.

3. We finally stabilise the potential with respect to the Kähler moduli numerically.

4.2 Matter field stabilisation

Similar to the one-field case, the fields p and q can be stabilised at p = q = 0.3 Then we

need to determine Φ and ρ as functions of the volume. We should note at this point that

it is not possible to set any of these two fields to zero, in particular ρ 6= 0, since then the

contribution from ∂W∂KK−1 vanishes as well, and we remain with only positive definite

terms in the F-term potential.

We would now like to fix the implicit dependence of the matter fields on the Kähler

moduli. In order to ensure that there will not be any further leading order correction to

this assumption it is necessary to satisfy one of the following conditions:

After fixing the quark and antiquark fields the D-term potential looks like:

VD =
gs

2τ2V
4

3





|ρ|2 (36aτ2 + n)

18ag1−n
s τ1−n

2

− |Φ|2(18aτ2 − n)

18ag1−n
s τ1−n

2

+
3M2

P

√
τ2

2aV1/3

1

1 + ξ

g
3/2
s V





2

. (4.5)

Starting from the observation that the only negative contribution in the D-term potential

comes from the term including Φ fields, it is natural to think that this term will cancel

the leading order FI contribution.4 Cancelling the leading order FI-term with the Φ field

implies the following implicit volume dependence:

|Φ|2 =
|Φ̃|2
V1/3

. (4.6)

With this assumption we can rewrite the D-term as follows:

VD =
gs

2τ2V
4

3





( |ρ|2 (36aτ2 + n)

18ag1−n
s τ1−n

2

)2

+
1

V2/3





3
√

τ2

2a

M2
P

1 + ξ

g
3/2
s V

− |Φ̃|2(18aτ2 − n)

18ag1−n
s τ1−n

2





2

+
2

V1/3





3
√

τ2

2a

M2
P

1 + ξ

g
3/2
s V

− |Φ̃|2(18aτ2 − n)

18ag1−n
s τ1−n

2





( |ρ|2 (36aτ2 + n)

18ag1−n
s τ1−n

2

)



 . (4.7)

3See appendix C for a detailed discussion.
4The next to leading order FI contribution is of sub-leading order even compared to the leading order

F-term potential.
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To cancel the FI-term we find:

|Φ|2 =
|Φ̃|2
V1/3

=
54M2

P g1−n
s τ

3/2−n
2

2(18aτ2 − n)V1/3

aτ2≫1
=

3M2
P g1−n

s τ
1/2−n
2

2aV1/3
. (4.8)

This assignment minimises the potential with respect to Φ at leading order. Higher order

corrections are in principle of importance if we stabilise ρ at a higher order compared to

Φ. However, we show in the appendix that we can neglect these higher order corrections

at our minimum.

Focusing on the mass field ρ, the first guess might be that there should be no difference

in the implicit dependence between Φ and ρ since they occur completely symmetrically after

setting the quark fields to zero apart from their appearance in the D-term. In this case,

we end up with the following two possibilities:

1. Φ and ρ both get VEVs that are of the same order as the FI contribution but we

have to cancel the D-term to leading order, so we do have to cancel the FI-term with

Φ. This fixes one of the matter fields up to a phase. We then have to minimise the

F-term potential on its own but with the following constraint |ρ|2 ∼ |Φ|2 − b, where

b is determined by the leading order FI part. The structure of the F-term looks

promising since we find the exact same volume suppression as in the LARGE volume

scenario and we can minimise with respect to the volume. But when we then try to

stabilise the remaining matter field, it turns out that one cannot achieve it at large

values for the volume. A detailed proof of this statement can be found in appendix A.

2. Φ and ρ get VEVs that are larger then the FI-term and they then differ at that ”sub-

leading” order. The problem now is that the matter fields become so massive that

we cannot trust our expansion anymore since we have to consider trans-Planckian

dynamics. In addition, one runs into similar problems as above.

Since the D-term potential should be suppressed higher than the F-term potential we would

like ρ to be higher suppressed than Φ. Hence we have to give ρ a higher implicit suppression

with respect to the Kähler moduli than to Φ. To find the implicit suppression and have

a maningful approximation, we demand that we have a very large volume and then, after

the full stabilisation process is finished, check if the assumption is consistent. This gives

us which term should be leading order in τ1, namely:

∂W∂W̄K−1eK . (4.9)

Since the next to leading order contribution from the FI-term is clearly subleading, we

have to suppress the term proportional to ρ at least more than the leading order F-term

potential term. This constraint implies that the leading order F-term contribution from the

term above is independent of ρ. Clearly ρ will occur in the leading order term coming from

∂W∂K̄K−1eK . With this implication we can determine the leading order F-term potential
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which looks as follows:

VF =
M4

P

g2
sτ

3
1

(

g2+n
s |Φ̃|2α2√τ1e

−2aτ2

M2
P τn

2

+
4ag2+n

s W0ατ2e
−aτ2Re (ρ̃Φ̃)

M2
P τ

1/4+m
1

+

3W 2
0

(

ξ

g
3/2
s

+
2nτn

2 |Φ̃|2

g1−n
s M2

P

(

1 − ξ

g
3/2
s τ

3/2

2

))

2τ
3/2
1









, (4.10)

where we kept the explicit dependence on Φ̃ and m reflects the uncertainty in the implicit

suppression of ρ̃ with respect to the large Kähler modulus and worked in the limit aτ2 ≫ 1

for clarity. Terms including higher order corrections in Φ have not been written down but

would not enter at leading order. From the structure above, we can see that we cannot

stabilise the potential with respect to ρ̃ with a vanishing D-term since the potential gives

a runaway behaviour to leading order with respect to ρ̃.

In order to avoid any further implicit dependence on τ1, we have to choose the implicit

dependence in a way that both terms, the D-term contribution and leading order F-term

contribution from ∂W∂K̄K−1eK have the same τ1 suppression. Fortunately this can be

achieved by the following implicit dependence:

|ρ|2 =
|ρ̃|2

τ
5/6
1

=
|ρ̃|2
V5/9

. (4.11)

At leading order we can stabilise with respect to ρ̃ as follows: Neglecting higher order

corrections in Φ, we face the following leading order potential in the limit aτ2 ≫ 1 evaluated

at Φ̃ = Φ̃min :

V = VD + VF

=
2τ2n−1

2 |ρ̃|4
g1−2n
s V22/9

+
3M4

P gsα
2e−2aτ2

2aτ
2n−1/2
2 V15/9

+
2
√

6g
1/2+n/2
s M3

P W0α
√

6τ
9/4−5n/6
2 e−aτ2 Re ρ̃

V22/9
+

3gsM
4
P W 2

0

2g
3/2
s V27/9

(

ξ +
g
3/2
s n

√
τ2

a

)

. (4.12)

The stabilisation with respect to ρ̃ goes as follows: Assuming W0 to be real, we first

observe that all coefficients are in front of ρ̃ are real. Differentiating with respect to ρ̃ and

its complex conjugate then directly leads to the fact that ρ̃ has to be real. We can now

straightforwardly stabilise ρ̃

0 =
∂

∂ρ̃
A(ρ̃)2(ρ̃∗)2 + B(ρ̃ + ρ̃∗) , (4.13)

where A and B are abbreviations for the coefficients in the leading order Kähler potential.

That constraint implies

0 = 2Aρ̃(ρ̃∗)2 + B
ρ̃∈R
= 2Aρ̃3 + B . (4.14)
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This can be solved directly for ρ̃ and we obtain in the limit aτ2 ≫ 1 :

ρ̃min =

(

3a

2

)1/6

MP g1/2−n/2
s (−W0α)1/3τ

3/4−5n/6
2 e−

aτ2
3 . (4.15)

After stabilising ρ̃, we end up schematically with the following leading order potential

(where we fixed n = 1/3 for simplicity):

V = gsM
4
P





3α2e−2aτ2

2aτ
1/6
2 V15/9

+
2
(

g
1/3
s |ρ̃|4 +

√
6aM3

P W0α Re(ρ̃)τ
17/12
2 e−aτ2

)

g
5/3
s M4

P τ
1/3
2 V22/9

+
3W 2

0 ξ

2g
3/2
s V27/9





= gsM
4
P

(

Ae−2aτ2

τ
1/6
2 V15/9

− Bτ
14/9
2 e−

4

3
aτ2

V22/9
+

C

V27/9

)

. (4.16)

Where we have defined:

A =
3α2

2a
, B = 62/3

(

1 −
(

1

2

)1/3
)

a2/3(−W0α)4/3, C =
3W 2

0 ξ

2g
3/2
s

. (4.17)

Due to the minimisation with respect to ρ we obtain a different exponential suppression

than the standard LARGE volume scenario, but keep a similar structure with similar

results.

We can clearly see from the potential that the extremisation with respect to ρ̃ gives

a minimum since the coefficients A and B are positive and at the minimum we have a

negative contribution from this factor.

4.3 Stabilising the Kähler moduli

To compare our stabilisation procedure to the LARGE volume scenario we go one step

back to the potential before extremising with respect to ρ̃ :

V =
2τ2n−1

2 |ρ̃|4

g
1/3
s V22/9

+
3gsM

4
P α2e−2aτ2

2aτ
2n−1/2
2 V15/9

+
2
√

6M3
P g

2/3
s W0α

√
6τ

5/4−n/2
2 e−aτ2 Re ρ̃

V22/9
+

3M4
P W 2

0

2V27/9

(

ξ

g
3/2
s

+
n
√

τ2

a

)

. (4.18)

This leading order structure looks very promising since it is very close to the original

LARGE volume scenario with an additional uplifting term:

VLV = gsM
4
P

(

a2A2√τ2e
−2aτ2

V +
W0Aaτ2e

−aτ2

V2
+

W 2
0 ξ

V3
+

Vuplift

V2

)

, (4.19)

where we neglected numerical constants for clarity. The different suppressions with respect

to the volume are reflected in an overall rescaling. Nevertheless, there is a slight difference

in the power dependence with regard to the volume in the ∂W∂K̄K−1eK (21/9 would be

perfect) which spoils the possibility of an exact analytical discussion of the minimisation

as it was possible in the LARGE volume case. However the difference to the original setup
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is rather small. Therefore the suppression looks to be a bit larger driving the minimum to

larger values. Obviously the adhoc uplifting contribution from previous LARGE volume

constructions gets replaced by a concrete supersymmetric D-term contribution.

After stabilising the matter fields, we now have a potential which only depends on the

Kähler moduli. Since we are not able to calculate the vacuum structure analytically we

find the minima numerically. To be more explicit we will specialise to the modulus weight

n = 1/3 from now on, which is for practical reasons only since similar results will hold for

other weights. After stabilising the matter fields we obtained the leading order potential

in the limit aτ2 ≫ 1 given by (4.16), which can be written in terms of τ1,2 as:

V = gsM
4
P

(

Ae−2aτ2

τ
5/2
1 τ

1/6
2

− Be−
4

3
aτ2τ

14/9
2

τ
11/3
1

+
C

τ
9/2
1

)

(4.20)

After fixing the matter fields to their value at the minimum, the uplifting term from the

D-term seems to disappear since we only have three terms in the potential which are similar

to the original LARGE volume. However the effect of the D-term potential can be seen in

the change of the exponential suppression of the term proportional to B which corresponds

to the negative contribution. This means that we have a smaller negative contribution

compared to the setup without the D-term. Despite the fact that the D-term does not

seem to be present anymore, it affects the shape of the potential in exactly the way an

uplifting term does.

In general, the shape of the potential after fixing the matter fields suggests that there

is a LARGE volume like structure with possible D-term lifting. Working strictly within

the Kähler cone (i.e. τ2 ≪ τ1), at relatively small values of the volume the term propor-

tional to the α′ corrections is dominant. In an intermediate range the attenuated negative

contribution proportional to W0 can be dominant and at large volumes the leading or-

der contribution will come from the ∂W∂W̄K−1 part. Due to the domination of this at

large volumes, the potential approaches zero from above in all directions. It is in fact

straigtforward to see that when the volume tends to infinity, the negative term cannot

dominate.

This behaviour at large volume is in agreement with the uplifted LARGE volume

scenario, where we approach zero from above. Therefore, by changing the value of the

parameters we may obtain an AdS, almost flat or dS minimum or have a runaway behaviour.

This is similar to the lifted LARGE volume scenario but different from the unlifted one

where zero is approached from below, so we can see the indirect effect of the D-term to

uplift the minimum. Notice also that it is different from the previous ways of getting de

Sitter space from a purely supersymmetric potential [27–29] in which the stabilised value of

the volume was relatively small, whereas here we are obtaining exponentially large volumes.

Let us study an illustrative example of these possible vacuum structures: First of

all, we are indeed able to stabilise the Kähler moduli at large values for the large Kähler

modulus τ1. For instance as depicted in figure 2, we are able to stabilise the Kähler moduli

with the following naturally chosen parameters:

In addition to the usual stabilisation corresponding to an AdS geometry, we now can

achieve a stabilisation of the Kähler moduli that correspond to a dS geometry. Taking
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Figure 2. A plot of the numerical behaviour of the scalar potential with respect to the Kähler

moduli showing an AdS minimum.

τ1 τ2 Vmin Φ ρ W0 a gs α ξ

768.03 5.20 −3.03 × 10−12gsM
4
P 0.34g

1/3
s MP 0.12g

1/3
s MP −15.85 0.6 0.1 1.10 0.32

Table 3. Showing the parameter values in the AdS-example.

Figure 3. A plot of the numerical behaviour of the scalar potential with respect to the Kähler

moduli showing a dS minimum.

the previous example, this is achieved by tuning the flux parameter from W0 = −15.85

to W0 = −15.25. The resulting figure is 3 and the numerical values in this example are

summarised in the following table:
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τ1 τ2 Vmin Φ ρ W0 a gs α ξ

873.40 5.44 1.83 × 10−13gsM
4
P 0.33g

1/3
s MP 0.11g

1/3
s MP −15.25 0.6 0.1 1.10 0.32

Table 4. Showing the parameter values in the dS-example.

Figure 4. A plot of the numerical behaviour of the scalar potential with respect to the Kähler

moduli showing no minimum.

Figure 5. A plot of the numerical behaviour of the scalar potential with respect to the Kähler

moduli with a minimum of V = 5.74 × 10−26.

Changing the parameters too drastically now results in a disappearance of the mini-

mum as depicted in figure 4.

In general we find a smooth transition from AdS to dS solutions. We may tune the

parameters to obtain almost Minkowski minima.5 The following example 5 shows a con-

siderable tuning to a minimal value for the potential of V = 5.74 × 10−26.

For a full analysis we should check our analytical results for the matter fields by

5In principle further tuning freedom can be achieved if the magnetised D7 brane is considered to be in

a warped region [2] as in the original proposal of [1] for the lifting anti-D3 brane.
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Figure 6. A plot of the numerical behaviour of

the scalar potential with respect to the matter

field ρ.

Figure 7. A plot of the numerical behaviour of

the scalar potential with respect to the matter

field Φ.

visualising the potential with respect to the matter fields as well. In the case of the dS

example from the previous section we obtain the following figures 6 and 7.

Both plots support our previous analysis with a minimum in the predicted region. In

particular the correction to Φ does not spoil our uplifting mechanism.

5 D7 soft-terms

We now would like to study the mechanism of supersymmetry breaking within the 2-moduli

framework presented in the previous sections. For this we assume a brane construction on a

separate four cycle τ3 (e.g. through an SU(5) GUT model [31]) leading at low-energies to a

MSSM realisation. The Standard Model cycle τ3 cannot be stabilised by non-perturbative

effects as pointed out in [34], however loop effects could stabilise the additional cycle [40],

leaving us for now with a regime of effective field theory (τ3 6= 0). This ansatz is slightly

different from the original study of soft-terms in the LARGE volume scenario (cf. [23]

and [30]), but was recently discussed in [35].6

The volume in this extended Swiss-cheese Calabi-Yau can be written as V = τ
3/2
1 −

τ
3/2
2 − τ

3/2
3 . The philosophy of our approach is depicted in figure 8 below.

We start with the following general effective supergravity ansatz:

K = −2M2
P log

(

V + ξs3/2
)

− log (s) +
τn
2

τ1

(

|p|2 + |q|2 + |ρ|2 + |Φ|2
)

+ K̃i|υi|2 , (5.1)

W = M3
P g3/2

s W0 + MP g1/2+n
s αe−aT2

(

pΦq

µ
+ ρΦ

)

+ WMSSM , (5.2)

where we reintroduced the dilaton dependence s; υ denotes one of the chiral superfields

within the MSSM whose superpotential is given by WMSSM. For now, the correct form of

the moduli weights in the Kähler potential is not of major importance, and we keep our

study as general as possible.

6We concentrate here on generic D7 brane soft terms without including explictly the mechanism for

stabilising the MSSM modulus. We only assume that it is not stabilised at a singular point. A detailed

study of this consideration is left for future work.
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Figure 8. In the simplest model the geometry of the Calabi-Yau is parametrised by three 4 cycles.

τ1 is the large cycle; τ2, τ3 denote the small (blow-up) cycles. We assume the MSSM to be localised

at τ3 and our ISS brane setup is localised on τ2.

A priori we can say that the scheme of supersymmetry breaking is gravity (moduli)

mediated. The amount of gauge mediated contribution can be seen in the fact that the

masses associated with the hidden sector matter fields ρ and Φ are larger or of the order of

the gravitino mass (see the appendix for an estimate of the masses associated to our model).

In due course we will establish the same or even stronger contributions to the moduli

mediated soft masses compared to the LVS and we therefore can neglect contributions

arising from anomaly mediation.

We follow the standard mechanism of calculating soft supersymmetry breaking terms

as for example used and described in [36].

Gravitino and Gaugino Masses. The gravitino mass is found to have the standard

volume suppression:

m3/2 = e
K

2M2
P
|W |
M2

P

=
MP |W0|g1/2

s

VE
. (5.3)

where the subscript E is added to clarify that this is the Einstein-frame volume.

The F-terms needed for the remaining soft-terms are calculated in detail in appendix

F. Gaugino masses are in general given by

Ma =
1

2
(Re fa)

−1Fm∂mfa . (5.4)

Assuming our standard model is constructed via D7 branes, the gauge kinetic function is

fD7 = T3 , (5.5)
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Using those results, we find for the D7 brane gaugino masses the following mass:

MD7 ∼ W0MP g
1/2
s

2VE
=

m3/2

2
. (5.6)

Regarding the volume suppression of the gaugino masses, the results coincide with the

LARGE volume analysis. The additional suppression of the gaugino masses due to a next

to leading order cancellation in the F-terms (discussed in [37]) does not occur since τ3 is

not stabilised by non-perturbative effects.

Scalar Masses. Scalar masses can be found by the following formula

m2
i = m2

3/2 − FmF̄ n̄∂m∂n̄ log K̃i , (5.7)

where we neglect contributions from the vacuum energy.7 To calculate the scalar masses we

have to specify the matter metric K̃i. However we can start with the following general ansatz

K̃i ∼
τ b
3sc

τd
1

. (5.8)

This gives the following leading order results

∂τ1∂τ1 log K̃i =
d

4τ2
1

, (5.9)

∂τ3∂τ3 log K̃i = − b

4τ2
3

, (5.10)

∂s∂s log K̃i = − c

4s2
. (5.11)

Using the results for the F-terms derived in the appendix, we find the following results:

(F τ1)2∂τ1∂τ1 log K̃i ∼
dW 2

0 M2
P gs

V2
(5.12)

(F τ3)2∂τ3∂τ3 log K̃i ∼ −bM2
P W 2

0 gs

V2
(5.13)

(F s)2∂s∂s log K̃i ∼ −cM2
P W 2

0 gs

V4
(5.14)

We can directly see that the contribution arising from the dilaton is negligibly small. In

addition, we find that the leading order term proportional to the gravitino mass vanishes

if d − b = 1. If this relation is satisfied, we have to identify the next to leading order

contribution. Unlike in the original LARGE volume analysis, there is no sub-leading can-

cellation in the F-terms [35] for the Kähler moduli since the e−2aτ2 term in (4.20) comes

from ∂φW∂φWKφφ rather than ∂τ2W∂τ2WKτ2τ2 and the D-term uplifting contribution re-

quire a slightly different stabilisation as discussed in the previous section. This determines

the sub-leading contribution (see appendix for further details) to come from the mixing of

7Here the addition of D-terms does not change the formula for scalar masses since the SM fields are

not charged under the anomalous U(1) in the hidden sector. A general formula was presented for example

in [38].
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the non-perturbative leading order contribution to the F-term and the other leading order

F-term contribution. We obtain the interesting result:

F τ1F τ1
np∂τ1∂τ1 log K̃i ∼

2dW0g
m
s ρ̃Φ̃τ2e

−aτ2

V2τ
2/3
1

, (5.15)

F τ3F τ3
np∂τ3∂τ3 log K̃i ∼ −2bW0g

m
s ρ̃Φ̃τ2e

−aτ2

V2τ
2/3
1

. (5.16)

Evaluating these contributions at the LARGE volume minimum (eaτ2 ∼ Vx) gives the

following common volume suppression:

F τiF τi
np∂τi∂τi log K̃i ∼

d − b

V2+ 4

9
+ 4x

3

. (5.17)

Overall we find the general expression for the scalar masses to be

m2
i = (1 − d + b)m2

3/2 − 2(d − b)
W0g

m
s ρ̃Φ̃τ2e

−aτ2

V2τ
2/3
1

, (5.18)

where the second term is subleading since it is higher suppressed with respect to the volume.

For example, taking d = 1 and b = 1/3 as in previous sections and in the analysis of

soft terms in the LVS [30], we obtain no cancellation at leading order and find the following

scalar masses:

m2
i =

1

3
m2

3/2 + higher order corrections. (5.19)

A-terms. The A-terms are given by

Aijk = Fm(∂mK + ∂m log Yijk − ∂m log K̃iK̃jK̃k) (5.20)

Assuming a constant Yijk we can estimate the A-terms to be given by the following expres-

sion at leading order:

Aiii =−2τ1
√

gs|W0|MP

V

(

3

2τ1
− 3d

2τ1

)

− 2τ3
√

gs|W0|MP

V

(

3
√

τ3

2V +
3b

2τ3

)

+
2τ2

√
gs|W0|MP

V

(

3
√

τ2

2V

)

= −3m3/2(1 − d + b) + h. o. , (5.21)

which are universal and of the order of the gravitino mass.

Short Summary. Overall we find three different scenarios according to the value of d−b

and τ3:

1. If d − b 6= 1 the soft terms are of the order the gravitino mass.

2. If d − b = 1 the gaugino masses are of order of the gravitino mass but scalar masses

and A-terms are much more suppressed.
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τ1 τ2 A B C W0 a α ξ/g
3/2
s

1010 5 3.1 × 10−7 −19.6 3000000 −3673 2 0.00064 0.15

Table 5. Showing the parameter values for an approximated minimum with TeV scale gravitino.

In all cases the soft terms are universal [30, 39].

We can compare these results with the original LARGE volume analysis from [30]

where cancelations in the F-terms occurred due to the minimization of the small cycles via

non-perturbative effects and the soft-terms where found to be:

Mi ∼
m3/2

log m3/2
, mi = nMi, Aαβγ = −3nMi .

The additional small suppression of the soft-terms compared to the gravitino mass

found in the original LARGE volume analysis is not present here and this feature distin-

guishes the structure of soft-terms from both scenarios.

The difference to the corresponding 3-cycle set-up in the LVS [35] is that the slight

difference in the potential (D-term uplifting contribution especially) renders the scalar

masses not affected by sub-leading corrections in the F-term or the Kähler metric. A

detailed quantitative analysis of this scenario is out of the scope of this article.

Example with TeV soft terms. Taking the scenario with all soft-masses of the order

the gravitino mass, the volume has to be of the order V = 1015, implying a TeV string

scale. In the previous section we presented numerical examples of the uplifting mechanism

for higher string scales. The aim of this section is to present a numerical estimate for a

realistic scenario allowing for TeV soft-masses. Due to the lack of an analytic minimum,

we are limited to estimate the explicit value at the minimum. As discussed in appendix E,

a slight change in the potential allows for an analytic discussion:

V = gsM
4
P

(

Ae−2aτ2

τ
5/2
1 τ

1/6
2

− Be−
4

3
aτ2τ

14/9
2

τ
11/3
1

+
C

τ
9/2
1

)

. (5.22)

In the appendix we give a detailed analysis of the potential which enables us to estimate a

minimum at τ1 = 1010. We derive for τ2 the following condition at the minimum:

(

2

3

) 2

3 22a7/3(−W0α)2/3τ
59

18

2

9ξ
= e

2

3
aτ2 (5.23)

A stabilisation at exponentially LARGE volume, requires aτ2 to be sufficiently large. To

achieve this consistently (positive discriminant) this requires the ratio (W0α)2/3/ξ to be

sufficiently large. For the case of TeV gravitino mass we find the following set of parameters:

We have then been able to stabilise moduli at LARGE volumes (e.g. V = 1015), which

is phenomenological desirable since it gives rise to TeV gravitino mass. Generically, it

is straightforward to obtain very large values of the volume, of order V ∼ 105 − 108 in

string units, but larger volumes, as in the current example, require large values of some

combination of the parameters A, B and C, which is not generic.
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The reason for this is that to obtain de Sitter, the lifting effect tends to erase the AdS

minimum, as usual, and the larger the volume, the smaller the value of the AdS vacuum

energy and then the bigger the effect of the lifting term. However, similar to lifting by anti

D3 branes, the lifting term can be controlled by having that sector on a warped region.

We have not used this extra degree of freedom here. It is remarkable that even without

warping we can still achieve dS lifting with very large volumes without fine tuning. A

detailed study of the effect of warping is out of the scope of this article.

6 Kähler moduli inflation

In the previous sections we described a mechanism that allows us to obtain dS vacua within

a fully N = 1 supersymmetric action. We now would like to show how to implement the

model of Kähler moduli inflation [17] within this framework.

The starting point of the discussion is the modification of the original geometry of

P[1,1,1,6,9] by adding an additional small 4-cycle. The volume is modified to

V = τ
3/2
1 − τ

3/2
2 − τ

3/2
3 . (6.1)

On that additional 4-cycle we assume a non-perturbative effect Be−bT3 . The Kähler and

superpotential are changed to:

K = −2M2
P log

(

V +
ξ

g
3/2
s

)

+
gn
s τn

2

gsτ1
(|p|2 + |q|2 + |ρ|2 + |Φ|2) , (6.2)

W = M3
P g3/2

s W0 + MP g1/2+n
s e−aT2α(

pΦq

µ
+ Φρ) + M3

P g3/2
s Be−bT3 . (6.3)

This change alters the leading order potential to:

V = Vold + gsM
4
P

(

8(bB)2
√

τ3e
−2bτ3

3V +
4W0bBτ3e

−bτ3

V2

)

, (6.4)

where Vold is the potential discussed in previous sections. The old potential is independent

of τ3 and we can hence stabilise the new part with respect to τ3 at constant volume. We

obtain in the limit bT3 ≫ 1 :

bBe−bτ3 =
W0

√
τ3

12V . (6.5)

Plugging this value into the original potential gives the following contribution at the ex-

tremal value for τ3 :

V = Vold − 17W 2
0 (τ0

3 )3/2

54V3
. (6.6)

Since the contribution from the potential including τ3 is negative, we have to be at a

minimum with respect to τ3. Having a negative contribution from the inflationary potential

at the minimum then also requires to stabilize the potential at a “large” positive value and

not at an almost Minkowski minimum. The assumption that V can be taken to be constant

during inflation is justified in the limit b ≫ a as the effect of the additional cycle τ3 towards

the potential is negligibly small compared to the old potential. Hence we end up with the
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same potential as in the Kähler moduli inflation but with the advantage that we can use

our new mechanism to stabilise the volume at a positive vacuum energy.

Following the analysis of the original paper [17], we can now calculate the inflationary

characteristics of this model. Our inflationary potential is given by

V = Vold +
4τ3W0bBe−bτ3

V2
, (6.7)

where we neglect the higher suppressed and hence irrelevant term including the double

exponential. The physically relevant parameter is the canonically normalised version of τ3

which is found to be at leading order

τ c
3 =

√

3

4

τ3MP

(τ0
1 )3/4(τ0

3 )1/4
, (6.8)

where the exponent “0” denotes that the value is taken at the minimum. Rewriting the

potential in terms of the canonically normalised field τ c
3 shows the exponential suppression

with respect to the volume

V = V0 +
4W0bB

MPV2

(

3V
4

)2/3

(τ c
3)4/3 exp

[

−b

(

3V
4

)2/3 (τ c
3 )4/3

MP

]

. (6.9)

From this potential we find the following slow-roll parameters:

ǫ =
M2

P

2

(

V ′

V

)2

=
32(W0bB)2

3V 2
0 V4

τ
1/2
3 (1 − bτ3)

2e−2bτ3 , (6.10)

η = M2
P

V ′′

V
=

4W0bB

3
√

τ3V0V2
(1 − 9bτ3 + 4(bτ3)

2)e−bτ3 , (6.11)

ξ = M4
P

V ′V ′′′

V 2
= −32(W0bB)2

9V 2
0 V4τ3

(1 − bτ3)(1 + 11bτ3 − 30(bτ3)
2 + 8(bτ3)

3)e−2bτ3 , (6.12)

where the derivatives are taken with respect to the canonically normalised fields. In these

parameters the only small difference is that we have not specified V0 yet, which will be of

a similar form compared to the LARGE volume scenario. From the slow-roll parameters

one can determine the spectral index and its running as

n − 1 = 2η − 6ǫ + O(ξ) , (6.13)

dn

d ln k
= 16ǫη − 24ǫ2 − 2ξ . (6.14)

In analogy to the original discussion of Kähler moduli inflation we find the number of

e-foldings to be given by

Ne =

∫ φ

φend

V

V ′
dφ =

3V0

16W0bB

∫ τ3

τend
3

ebτ3

√
τ3(1 − bτ3)

dτ3 . (6.15)

To match the COBE normalisation for the density fluctuations δH = 1.92 × 10−5 we have

to satisfy the following constraint

V 3/2

M3
P V ′

= 5.2 × 10−4, (6.16)
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where the potential is evaluated at the horizon exit, which means Ne = 50 − 60 e-foldings

before the end of inflation. This endows us with a constraint to determine the contribution

from the original potential V0. In general the only modification on the model of Kähler

moduli inflation is given by the fact that the old LARGE volume contribution is replaced

by the new potential which was developed and discussed in the previous sections. It is

therefore most likely that a concrete calculation, which we have not completed yet, will give

the same numerical results as in the original Kähler moduli scenario, which are given by:

• The tensor-to-scalar ratio was found to be

r ∼ 16ǫ . (6.17)

• For 50 − 60 e-foldings, the model gives rise to the following characteristics:

0.960 < n < 0.967 , (6.18)

−0.0006 < dn
d lnk < −0.0008 , (6.19)

0 < |r| < 10−10 , (6.20)

105l6s ≤ V ≤ 107l6s . (6.21)

7 3-parameter K3 fibration and fibre inflation

To show the generality of the uplifting mechanism, we now consider the example of a 3-

parameter K3 fibration which allows Kähler moduli stabilisation at LARGE volume (cf. [40]

and [20]). We start with the same expression for the volume as in the mentioned articles

V = α
√

τ1(τ2 − βτ1) − γτ
3/2
3 . (7.1)

It was shown that the combination α
√

τ1(τ2 − βτ1) plays the rôle of the exponentially

dominating volume as in the original LARGE volume scenario. τ3 plays the role of a

blow-up and is crucial for the existence of a stable minimum at LARGE volume. Taking

only the scalar potential, one still remains with one flat direction, corresponding essentially

to τ1. It was shown in [40] that this runaway behaviour can be stabilised by considering

loop-corrections to the potential.

To embed our uplifting scenario in this K3 setup, we need to know where (i.e. on

which cycle) non-perturbative effects are required. To keep the same structure of moduli

stabilisation it is necessary to place our brane setup on the blow-up cycle τ3. Since both of

the other cycles have to be too large and the non-perturbative effects are hence negligibly

small on those cycles.

Our setup in terms of the Kähler and superpotential then looks like

K = −2M2
P log

(

V +
ξ

g
3/2
s

)

+
τm
3

g1−m
s V2/3

(

|p|2 + |q|2 + |ρ|2 + |Φ|2
)

, (7.2)

W = g3/2
s M3

P W0 + MP g1/2+m
s δe−aT3

(

pΦq

µ
+ ρΦ

)

. (7.3)
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Wrapping around the 4-cycle parametrised by τ3 gives us the following leading order struc-

ture in the D-term potential:

VD =
1

2τ3

(

τm
3

V2/3

(

qρ|ρ|2 + qΦ|Φ|2
)

+ Qτ3

(

3
√

τ3

2(V + ξ)
+

mτm−1
3 (|ρ|2 + |Φ|2)

V2/3

))2

, (7.4)

where we directly set the quark fields to zero. The structure of the D-term potential is

essentially the same as in the analysis of the P[1,1,1,6,9] geometry from the previous section.

This not only allows us to set the quark fields to zero but also to cancel the FI-term with

the least suppressed Φ−field.

Hence obtain the following implicit dependence of Φ on the large Kähler moduli

|Φ|2 =
|Φ̃|2
V1/3

=
Qτ3V2/3τ

1

2
−m

3

2qΦ(V + ξ)

(

1 +
mQτ3

qΦτ3

)−1

≈ Qτ3τ
1

2
−m

3

2qΦV1/3
. (7.5)

As in the Swiss-cheese case we can only assume at this stage that ρ is implicitly higher

suppressed than Φ with respect to the Kähler moduli.

With this assumption and the knowledge from the previous study in the Swiss-cheese

case we can now estimate the leading order contributions to the F-term potential:

eK ∼ 1

V2
(7.6)

∂W∂W̄K−1 ∼ g2+m
s M2

P δ2e−2aτ3 V1/3|Φ̃|2
τm
3

(7.7)

∂W∂K̄K−1W̄ + c. c. ∼ 12W0g
3/2+m
s M3

P δRe ρ̃Φ̃e−aτ3γV1/3τ3(m + aτ3)
(

3gsM2
P γV1/3τ

3/2
3 + 2gm

s mα
√

τ1(βτ1 − τ2)
τm
3

|Φ̃|2

V1/3

)

V1/6+n
(7.8)

∂K∂K̄K−1 ∼ 3|W0|2 + W 2
0

Aξ + B|Φ̃|2

τ
3/2
b

, (7.9)

where the coefficients A and B are introduced to keep the overall structure feasible. τb

denotes the power suppression with respect to the large Kähler moduli.

We can now determine the implicit dependence of ρ on the Kähler moduli in the same

way as before to be n = 5/18. This enables us to integrate out the matter fields completely

and we end up with the following potential with respect to the Kähler moduli

V =
Aτ

1/2−2m
3 e−2aτ3

V5/3
− Be−

4

3
aτ3τ

5/3−2m
3

V 7

3
+ 1

9

+
C

V3
. (7.10)

Let us compare this potential with the original 3 parameter K3 potential which was calcu-

lated in [40] to be given by

V =
A
√

τ3e
−2aτ3

V − Bτ3e
−aτ3

V2
− C

V3
. (7.11)

The comparison leads to exactly the same results as in the P[1,1,1,6,9] analysis from the

previous section:
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• We have a marginally higher suppression with respect to the overall volume arising

from the change in the leading order F-terms. In addition we have a slightly larger

suppression with respect to the volume in the second term, due to the matching of ρ

D-term and F-term contributions with powers of the large Kähler moduli.

• In the same term we have the only other difference in the exponential suppression

arising after integrating out ρ.

• Despite missing the analytic minimisation with respect to the volume by this slight

change, we can still approximate the minimisation. We then see that we have the

typical exponential hierarchy between the volume and the blow-up Kähler modulus.

• To stabilise the remaining large Kähler modulus we can still use loop corrections as

discussed in [40].

Due to the same change in the potential, we assume at this stage that it is possible to

stabilise the Kähler moduli in the same fashion with the additional uplifting as in the

Swiss-cheese case.

7.1 Fibre Inflation

Following the successful embedding of D-term uplifting to the 3-Parameter K3 fibration it

is natural to raise the question whether we can embed fibre inflation [20] into this uplifting

scenario. In order to realise the proposal of fibre inflation we need to wrap branes around

the two large cycles τ1 and τ2. These additional branes do not intersect with the blow-up

cycle and do not create additional matter field content at the intersections. To obtain the

potential of fibre inflation, one has to study the loop corrections (gs) to the scalar potential.

As shown in section 3.1.2 of [20] the leading order string-loop corrections are then given

by the following contributions:

• From the branes wrapping the 4-cycle τ1 :

δV KK
(gs),τ1

=
g2
sW

2
0 (CKK

1 )2

τ2
1V2

. (7.12)

• From the branes wrapping the 4-cycle τ2 :

δV KK
(gs),τ2

=
2g2

sW
2
0 (CKK

2 )2

τ2
2V2

. (7.13)

• From the intersections of the two stacks of branes around τ1 and τ2 :

δV KK
(gs),τ1τ2

= −2CW
12√
τ1

W 2
0

V3
. (7.14)

• From the branes wrapping the blow-up cycle:

δV KK
(gs),τ3

=
g2
sW

2
0 (CKK

3 )2√
τ3V3

. (7.15)

This contribution does not depend on the ”flat”-direction τ1 and can be hence un-

derstood as a subleading correction in the α′-corrections.
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With those results, we can establish our additional inflationary potential on top of the

leading order scalar potential of the previous section:

V =
Aτ

1/2−2m
3 e−2aτ3

V5/3
− Be−

4

3
aτ3τ

5/3−2m
3

V 7

3
+ 1

9

+
C

V3
+ Vinf (7.16)

=
Aτ

1/2−2m
3 e−2aτ3

V5/3
− Be−

4

3
aτ3τ

5/3−2m
3

V 7

3
+ 1

9

+
C

V3
+

W 2
0

V2

(

D

τ2
1

− E

V√τ1
+

Fτ1

V2

)

. (7.17)

We see that as in the discussion of Kähler moduli inflation both parts of the potential

simply decouple. Exactly as in the original discussion of fibre inflation it is possible to

stabilise the volume in a first step and then look at the τ1 direction as the inflationary

direction. We can therefore say that it is straight forward to embed fibre inflation into the

uplifted scenario and under the assumption of a constant volume the analysis of inflationary

parameters will give exactly the same results. Although a multi-field analysis (i.e. taking

the volume to be non-constant) is out of the scope of this article, we can still comment

on the stability of our uplifted scenario with regard to variations of the volume. It was

observed in the analysis of the fibre inflation model that it is necessary to avoid a runaway

in the volume to introduce an uplifting term proportional to 1/V4/3. In our scenario, we

exactly have such an uplifting term before integrating out ρ, since, as previously discussed,

the uplifting is caused by

Vup ≈ |ρ̃|4
V22/9

=
|ρ|4
V4/3

. (7.18)

We therefore expect that the multi-field analysis would give exactly the same results as in

the original analysis.

8 Constraints for metastable dS vacua in supergravity setups

In recent years it was studied under which general constraints it is possible to obtain

metastable dS vacua and/or inflation in a general supergravity framework [21, 41–43].

Since our construction from previous sections is presented in a fully N = 1 supergravity

framework we would like to comment on why our approach satisfies these constraints.

These studies fall into the following two categories:

1. The first type of constraints was developed by Gomez-Reino and Scrucca [41, 43].

Subject to a vanishing cosmological constant, they developed necessary but not suffi-

cient constraints for the existence of vacua in a general supergravity setup consisting

of D-term and F-term potential.

2. In more recent papers Covi et al. [21, 42] studied explicitly the possibilities for various

string compactifications to obtain metastable dS minima and inflation. However, the

constraints used here do not assume a vanishing cosmological constant but do not

include a D-term potential.

In order to avoid a long calculation and introduction of terminology to the reader we simply

would like to argue why our approach falls into the category of string models discussed
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in [21, 42] and why this also allows us to satisfy the modified constraints after the inclusion

of D-term potentials:

First of all, our model heavily relies on both components of the scalar potential, D-

term and F-term. Since we are in principle able to tune the minimum of our potential to

zero cosmological constant, we assume that we can use the constraints developed in the

first series of papers by Gomez-Reino and Scrucca. The constraints we have to satisfy are:

f ifi + dada = 1 , (8.1)

Rij̄pq̄f
if j̄fpf q̄ ≤ 2

3
+

2

3
(M2

ab/m
2
3/2 − 2hab)d

adb + 2hcdhacihbdj̄f
if j̄dadb

−(2habhcd − hi
abhcdi)d

adbdcdd +

√

3

2

Qabc

m3/2
dadbdc , (8.2)

where fi and da are the F-term or respectively D-term rescaled by 1/m3/2 and Rij̄pq̄ denotes

the Riemann tensor with respect to the Kähler metric. hab is the gauge kinetic function

and Qabc is the variation of the gauge kinetic function with respect to the generators of the

gauge symmetries.8

Neglecting the D-term for the moment, the second constraint simplifies to

Rij̄pq̄f
if j̄fpf q̄ ≤ 2

3
, (8.3)

which was renamed in the second series of papers to σ = Rij̄pq̄f
if j̄fpf q̄− 2

3 > 0. For various

types of string compactifications, the value of σ was determined in the work by Covi et

al. In particular it was shown that for no-scale models with included α′−corrections, it is

always possible to satisfy this constraint for a vanishing cosmological constant (cf. equation

(4.33) in [42]).

Including D-terms can even alleviate this problem, as shown in [41, 43] since one can

rescale the F-terms and the curvature in such a way that the dependence on the D-terms

seems to disappear:

δIJ̄zIzJ̄ = 1 , (8.4)

R̃IJ̄P Q̄zIzJ̄zP zQ̄ ≤ 2

3
, (8.5)

where zI = f I/
√

1 −∑A d2
A. The change in the curvature can be evaluated in particular

limits of the relation between gaugino and gravitino mass. In the terminology of those

papers, we are working in the regime of the “light vector limit” since gU(1)MU(1)/2m3/2 <

gU(1) ≪ 1. In this case it was shown in [43] that the curvature is lowered due to the D-terms.

Hence we can conclude that in our class of models we are easily able to satisfy the con-

straints for general supergravity setups and the possibility of generating stable dS minima.

8A more detailed explanation of the quantities in those constraints and a derivation of those can be

found in the original papers.
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8.1 Constraints on anomalous U(1) gauge symmetries as uplifting potential

Our explicit construction for dS moduli stabilisation with the help of an anomalous U(1)

gauge symmetries contrasts with the findings of Choi and Jeong in [6]. In this article they

consider the possibility of using the D-term potential of an anomalous U(1) symmetry

as the uplifting mechanism and find that no uplifting is possible if the gravitino mass is

smaller than the Planck scale by many orders of magnitude, assuming the Kähler moduli

of order unity. This assumption is clearly violated in the context of the LARGE volume

scenario discussed here which then allows to have D-term uplifting. Recall also that, unlike

the KKLT scenario for which the original F-term vanishes, the LARGE volume scenario

has non-vanishing F-terms and therefore non-vanishing D-terms are also possible.

9 Conclusions

In this article we have found a probably unexpected application of the ISS scenario. Em-

bedding it within low-energy effective actions from type IIB string compactifications, the

original metastable minimum of the ISS scenario tends to be destabilised towards runaway

in the direction of the Kähler modulus determining the gauge coupling constants. This

happens even after introducing a constant flux induced superpotential W0 in the simplest

one-modulus case.

Things change dramatically in Swiss-cheese compactifications with several Kähler mod-

uli. We have found that in these cases, the effective potential for the Kähler moduli, ob-

tained after matter field stabilisation has a similar form to the original LARGE volume

scenario. Contrary to that case, in which the non-perturbative superpotential is assumed

not to depend on chiral matter fields, the scalar potential cannot be minimised analyti-

cally. But the similarity allows for a numerical treatment that detects an exponentially

large volume, with several differences. The main difference is that the necessary presence

of D-terms, induced by anomalous U(1)’s gives a positive definite contribution to the scalar

potential in such a way that well inside the Kähler cone (τ1 ≫ τ2) the potential goes to

zero from above. Therefore this allows naturally to de Sitter compactifications with expo-

nentially large volume. Using the fluxes, the minimum of the potential can be tuned to

essentially zero value.

This allows for interesting applications: First, for the computation of soft supersymme-

try breaking terms in a realistic context in which the ISS scenario plays the role of hidden

sector and the Standard Model brane wraps a cycle without non-perturbatively induced

superpotential. The soft terms are universal as in the standard LARGE volume scenario

since the fields that break supersymmetry are the Kähler moduli which unlike the complex

structure moduli, are insensitive to flavour. Generically the soft terms will be all of order

the gravitino mass, but cancelations are possible depending on the modular weights of the

matter fields.

Secondly, our scenario allows also the possibility of realising Kähler moduli inflation

and Fibre Inflation in a fully supersymmetric set-up, the previous realisations were obtained

using an ad-hoc uplifting term. Essentially we used the fact that we can obtain de Sitter

space to provide the positive contribution to the scalar potential and then use a different
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Kähler modulus as the inflaton, just as in the original formulations of both scenarios. A

full analysis of the multi-field system for inflation is out of the scope of this article.

This scenario appears to be quite general. The main fact we used is the existence of

an anomalous U(1) with its D-term potential and a nonperurbative contribution to the

superpotential of the form e−aT Φρ. Therefore we expect the lifted large volume minimum

to appear in a large class of chiral models for which the non-perturbatively induced su-

perpotential includes matter fields. An interesting open question is to embed this scenario

within a realistic compact Calabi-Yau construction.
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A On stabilising the F-term potential with a constraint

In the process of stabilising the D-term and F-term potential separately, we claimed that

it is not possible to stabilise all fields in a suitable regime (e.g. at large volume). We now

would like to prove this result. The starting point is the schematic potential

V = A|ρΦ|2 + 2B Re (ρΦ) + C(ξ + |ρ|2 + |Φ|2) , (A.1)

where the coefficients depend on all other variables and constants. In addition we have the

constraint from the minimisation of the D-term potential.

|ρ|2 = x|Φ|2 + b , (A.2)

where b is determined by the FI-contribution to the D-term potential and x denotes the

arbitrariness in the charge assignment. Differentiating with respect to ρ and Φ leads to the

following two equations:

0 = Aρ∗|Φ|2 + BΦ + Cρ∗ , (A.3)

0 = AΦ∗|ρ|2 + Bρ + CΦ∗ . (A.4)

Multiplying the first equation by ρ and the second by Φ and subtracting, this gives |Φ| = |ρ|,
which cannot be satisfied since the D-term implies explicitly that they cannot be equal in

order to cancel the FI term.

B Next to leading order corrections to Φ

So far we stabilised ρ and Φ to leading order. Since the stabilisation with respect to ρ

depends crucially on the cancellation of the FI term, one can ask what happens if we want
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to stabilise Φ up to next to leading order. Does this destabilise the whole stabilisation

procedure? In order to answer this question, let us repeat the ansatz for Φ :

Φ =
1

V1/6

(

Φ̃ +
ϕ

Vβ

)

, (B.1)

and the next to leading order contribution to ∂Φ̃V at the leading order value:

∂Φ̃V |Φ̃=Φ̃+ϕ/Vβ =
2

2τ2V2

(

3
√

τ2ξ

2aV +
2Φ̃ ϕ

Vβ (18aτ2 − n)

18aτ1−n
2

)

Φ̃ (B.2)

− 2

2τ2V5/2

(

2Φ̃(18aτ2 − n)

18aτ1−n
2

)

( |ρ̃|2 (36aτ2 + n)

18aτ1−n
2

)

(B.3)

+
2Φ̃α2e−2aτ2

τn
2 V5/3

. (B.4)

In our scenario ϕ is taking negative or small values which can be seen as follows: At the

LARGE volume minimum, we expect

eaτ2 ∼ V . (B.5)

This implies that the contribution proportional to ρ̃ is suppressed with an additional factor

1/V2/3 which makes it subleading compared to the next to leading order corrections coming

from the FI bit. Hence, β = 1 and the next to leading order corrections to Φ at our

minimum will be negative. Suppose eaτ2 is not suppressed with respect to the volume, the

contribution from the leading order F-term will be dominating and drives ϕ to negative

values again. In an intermediate range the contribution from the cross-term between ρ and

Φ might be leading. However, we were never able to assign ϕ a value to cancel our D-term

contribution completely and hence we always keep the uplifting contribution.

C Minimizing quark masses

1-modulus. In principle there is a flat direction in the leading order D-term potential

which allows non-vanishing q and p. So we can minimize the D-term potential for non-

vanishing p, q and then we have to try to minimize the F-term potential. Looking at the

only non-trivial case of no implicit suppression with respect to the large Kähler modulus,

the leading order F-term contribution is given by

A

∣

∣

∣

∣

pΦq

µ
+ ρΦ

∣

∣

∣

∣

2

, (C.1)

where A contains constants and the dependence on the Kähler modulus. The first derivative

with respect to p gives

AΦq

(

pΦq

µ
+ ρΦ

)∗

, (C.2)

which is only zero for non-vanishing Φ and ρ if q = 0, since pq/µ + ρ 6= 0 due to the

rank condition. The case of an implicit suppression with respect to the Kähler moduli is

discussed below.
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2-moduli. A priori it is clear that the potential is extremized at p = q = 0 since the dom-

inating D-term potential is extremized. Suppose this extremum corresponds to a maximum

and we could find a minimum closeby. At that minimum p has an implicit dependence on

the large Kähler modulus. This dependence has to be at least of the suppression of Φ (i.e.

1/τ
1/4
1 ). Schematically the D-term potential looks like

VD ∼ (|Φ|2 − |ρ|2 − |p|2 − FI) . (C.3)

Neglecting ρ for the moment, we can see that there is a flat direction in the D-term potential

corresponding to |Φ|2 − FI = |p|2. Looking at next to leading order effects, i.e. the F-term

potential in this case we can “lift” this flat direction. Since we are perturbing around our

solution presented in the main part |Φ|2 −FI ≈ 0 and in particular it should be suppressed

with respect to the volume at least as much as |Φ|. Then the leading order contribution

from the F-term potential still is given by

|Φ|2e−2aτ2

τ
5/2
1

. (C.4)

Hence we do not want |Φ| to become larger at next to leading order, which implies that

|p| = 0 is a minimum.

D Estimating scales

The masses associated with our fields are given as the square root of the eigenvalues of the

matrix

K−1
ij̄

∂2V

∂xi∂xj̄
. (D.1)

To understand the results it is very helpful to estimate the leading order contributions to

the Kähler metric which we find to be

Kij̄(τ1, τ2, ρ,Φ) =





















3M2
P

4τ2
1

−27M2
P τ

7/6

2
+2g

−2/3
s |Φ̃|2

24τ
5/2

1
τ
2/3

2

− g
−2/3
s ρ̃τ

1/3

2

2τ
29/12

1

− g
−2/3
s τ

1/3

2
Φ̃

2τ
9/4

1

−27M2
P τ

7/6

2
+2g

−2/3
s |Φ̃|2

24τ
5/2

1
τ
2/3

2

27M2
P τ

7/6

2
−4g

−2/3
s |Φ̃|2

72τ
3/2

1
τ
5/3

2

g
−2/3
s ρ̃

6τ
17/12

1
τ
2/3

2

g
−2/3
s Φ̃

6τ
5/4

1
τ
2/3

2

− g
−2/3
s ρ̃∗τ

1/3

2

2τ
29/12

1

g
−2/3
s ρ̃∗

6τ
17/12

1
τ
2/3

2

g
−2/3
s τ

1/3

2

τ1
0

− τ
1/3

2
Φ̃∗

2g
2/3
s τ

9/4

1

Φ̃∗

6g
2/3
s τ

5/4

1
τ
2/3

2

0
g
−2/3
s τ

1/3

2

τ1





















(D.2)

This leading order behaviour in the Kähler metric is with respect to the the Kähler mod-

uli almost the same as in the LARGE volume case. The only change is given by the

contribution proportional to Φ in the relevant components but this change is negligibly

small.
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We find the leading order volume suppression in the Hessian of the potential evaluated

at the minimum for the brane moduli to be:

d2V =

















1
τ5
1

1

τ
3+1/3

1

1

τ
4+5/12

1

1

τ
3+3/4

1
1

τ
3+1/3

1

1
τ3
1

1

τ
3+5/12

1

1

τ
2+3/4

1
1

τ
4+5/12

1

1

τ
3+5/12

1

1

τ
3+5/6

1

1

τ
2+2/3

1
1

τ
3+3/4

1

1

τ
3+3/4

1

1

τ
2+2/3

1

1

τ
2+1/2

1

















(D.3)

where we assumed that at eaτ2 ∼ τ
3/2
1 and we neglected the exact coefficients for simplicity.

Numerically this leads to the following masses for the dS example from the previous section:

m2
τ1 = 6.7 × 10−7M2

P (D.4)

m2
τ2 = 2.5 × 10−6M2

P (D.5)

m2
ρ = 2.7 × 10−7M2

P (D.6)

m2
Φ = 3.9 × 10−5M2

P (D.7)

In order to interpret these results we would like to compare the masses with the masses in

the LARGE volume scenario, which are given by

mτ1 ∼ g2
sW0

(V0
s )3/2

MP ∼ m3/2

(

m3/2

MP

)1/2

, (D.8)

mτ2 ∼ agsW0

V0
s

MP ∼ 2m3/2 ln MP /m3/2 . (D.9)

Taking now the same parameters as for the dS example, we obtain

m2
τ1 = 4.1 × 10−8M2

P , (D.10)

m2
τ2 = 1.2 × 10−5M2

P . (D.11)

Compared with the original LARGE volume scenario, we can conclude that we obtain

roughly the same masses for the Kähler moduli. One of the brane moduli becomes very

massive mΦ and the other mass mρ is relatively the lightest particle but it is roughly

of the same order as the large Kähler modulus τ1. The difference in the Kähler moduli

masses is due to different numerical prefactors in the volume of the Calabi-Yau. In order

to compare these results completely reliably, we would have to go to a realistic value of the

volume which goes beyond our simple dS example. Before such an analysis is possible we

should estimate further crucial properties of this modified model such as the structure of

supersymmetry breaking.

We can however expect due to moduli being lighter than the gravitino that in general

we would face the cosmological moduli problem. As discussed in [44], an additional phase

of thermal inflation might alleviate this problem.
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E An approximative analytic stabilisation of the large Kähler modulus

After integrating out the matter field degrees of freedom we ended up with the following

potential

V = gsM
4
P

(

Ae−2aτ2

τ
5/2
1 τ

1/6
2

− Be−
4

3
aτ2τ

14/9
2

τ
11/3
1

+
C

τ
9/2
1

)

. (E.1)

Changing the suppression with respect to the large Kähler modulus τ1 in the term pro-

portional to B from 11/3 by 1/6 to 7/2 should not affect the structure qualitatively. The

change in the minimal value is negligibly small but allows us to minimise the potential

analytically.

The modified potential takes the classical form of the volume suppression looking like:

V =
gsM

4
P

τ
9/2
1

(

Ae−2aτ2τ2
1

τ
1/6
2

− Be−
4

3
aτ2τ

14/9
2 τ1 + C

)

(E.2)

Demanding the vanishing of the first derivative of the potential with respect to τ1 leads to

0 =
∂V

∂τ1
= − gsM

4
P

2τ
11/2
1

(

5Ae−2aτ2τ2
1

τ
1/6
2

− 7Be−
4

3
aτ2τ

14/9
2 τ1 + 9C

)

(E.3)

⇒ 0 = τ2
1 − 7Be

2

3
aτ2τ

31/18
2

5A
τ1 +

9Ce2aτ2τ
1/6
2

5A
. (E.4)

Solutions to this equation are given by

τ
(min, max)
1 =

7B

10A
τ

31

18

2 e
2

3
aτ2 ±

√

49B2

100A2
τ

31/9
2 e

4

3
aτ2 − 9Ce2aτ2τ

1/6
2

5A
. (E.5)

Looking at the leading order behaviour of the overall potential, it is clear that the negative

solution will correspond to the minimum and the positive solution to the maximum. In

order to keep to real solutions we have to satisfy the following condition for the discriminant:

49B2 τ
59

18

2

180AC
> e

2

3
aτ2 . (E.6)

The value of the discriminant is also crucial for the value we can stabilise the small Kähler

modulus τ2 at:

Demanding the vanishing of the first derivative with respect to the small Kähler mod-

ulus leads to the following condition:

0 = 4Be
2

3
aτ2τ

31/18
2 (−7 + 6aτ2) − 3Aτ1(1 + 12aτ2) . (E.7)

In the large aτ2 limit this condition simplifies at the minimum to the following equation

0 = − B

15A
τ

31

18

2 e
2

3
aτ2 + 2

√

49B2

100A2
τ

31/9
2 e

4

3
aτ2 − 9Ce2aτ2τ

1/6
2

5A
(E.8)

⇒ 22

81

B2τ
59

18

2

AC
=

(

2

3

)
2

3 22a7/3(−W0α)2/3τ
59

18

2

9ξ
= e

2

3
aτ2 . (E.9)

– 33 –



J
H
E
P
1
1
(
2
0
0
9
)
0
3
9

This is consistent with the constraint from above as expected and we obtain the same

behaviour in an exact calculation.

Unfortunately, we cannot solve the remaining equations for τ2 analytically. However,

we can be sure that a solution exists if the constraint is satisfied. Furthermore these

approximations should help in constructing solutions numerically.

F Calculating F-terms

Using DSW = 0, the F-term associated with the dilaton field S is found to be given by at

leading order:

F s̄ = e
K

2M2
P

(

K s̄τiDτiW + K s̄φiDφi
W
)

=
1

gsV

(

K s̄τi∂τiW +
W

M2
P

K s̄τi∂τiK + K s̄φi∂φi
W +

W

M2
P

K s̄φi∂φi
K

)

=
1

gsV
(

K s̄τ2∂τ2W + MP g3/2
s W0K

s̄τ1∂τ1K + K s̄Φ∂ΦW + K s̄ρ∂ρW
)

=
1

gsV

(

18
√

2MP g
3/2
s W0s

5/2ξ

τ
3/2
1

+
36
√

2e−aτ2g1/2+ms5/2αaξρ̃Φ̃

τ
13/6
1

)

=
18
√

2MP g
1/2
s W0s

5/2ξ

V2
+ O

(

1

V22/9

)

, (F.1)

which is the same as in the LVS. The F-terms associated with the Kähler moduli are at

leading order given by:

F τ̄1 = e
K

2M2
P

(

K τ̄1τiDτiW + K τ̄1φiDφi
W
)

=
1

gs

(

V + ξ

g
3/2
s

)

(

K τ̄1τi∂τiW +
W

M2
P

K τ̄1τi∂τiK+K τ̄1φi∂φi
W +

W

M2
P

K τ̄1φi∂φi
K

)

=
1

gs

(

V + ξ

g
3/2
s

)

(

−2W0MP g3/2
s τ1 + K τ̄1τi∂τiW + K τ̄1φi∂φi

W
)

=
1

gs

(

V+ ξ

g
3/2
s

)

(

−2W0MP g3/2
s τ1−

6
√

2W0MP ξ√
τ1

+
4aαg

1/2+m
s

MP
ρ̃Φ̃τ

1/3
1 τ2e

−aτ2

)

, (F.2)

where unlike in the LVS the third term is dominating over the second one at the minimum.

In the LVS as discussed in [35] there is a sub-leading cancellation, which is not present

due to a different leading order structure of the potential and the inclusion of the D-term

uplifting contribution: Here the second term plus the D-term uplifting contribution (with

opposite sign) are of the order of the second one, cf. equation (4.18):

V ⊃ 2τ2n−1
2 |ρ̃|4

g
1/3
s V22/9

+
2
√

6M3
P g

2/3
s W0α

√
6τ

5/4−n/2
2 e−aτ2 Re ρ̃

V22/9
+

3M4
P W 2

0

2V27/9

(

ξ

g
3/2
s

+
n
√

τ2

a

)

.
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With an absent D-term uplifting contribution the third term becomes dominant. However,

it is out of the scope of this article to determine the precise volume suppression of the

F-term when the second and third term cancel themselves partially.

F τ̄2 = e
K

2M2
P

(

K τ̄2τiDτiW + K τ̄2φiDφi
W
)

=
1

gs

(

V + ξ

g
3/2
s

)

(

K τ̄2τi∂τiW +
W

M2
P

K τ̄2τi∂τiK + K τ̄2φi∂φi
W +

W

M2
P

K τ̄2φi∂φi
K

)

=
1

gs

(

V + ξ

g
3/2
s

)

(

−2MP W0g
3/2
s τ2 −

8aαg
1/2+n
s ρ̃Φ̃τ

5/6
1

√
τ2e

−aτ2

3MP

)

, (F.3)

F τ̄3 = e
K

2M2
P

(

K τ̄3τiDτiW + K τ̄3φiDφi
W
)

=
1

gs

(

V + ξ

g
3/2
s

)

(

K τ̄3τi∂τiW +
W

M2
P

K τ̄3τi∂τiK + K τ̄3φi∂φi
W +

W

M2
P

K τ̄3φi∂φi
K

)

=
1

gs

(

V + ξ

g
3/2
s

)

(

−2MP W0g
3/2
s τ3 −

4aαg
1/2+m
s ρ̃Φ̃τ2τ3e

−aτ2

MP τ
2/3
1

)

. (F.4)

Although it is not of importance in the analysis of the soft-term structure, we would like

to mention the fact that there is no cancellation in the F-term associated with τ2 as in the

LVS. This is due to the fact that the leading order contributions in the F-term potential

come from various F-terms and not only from the small modulus τ2.
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[8] M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and

D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [SPIRES].

[9] K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua,

JHEP 04 (2006) 021 [hep-th/0602239] [SPIRES].

[10] A. Giveon and D. Kutasov, Gauge symmetry and supersymmetry breaking from intersecting

branes, Nucl. Phys. B 778 (2007) 129 [hep-th/0703135] [SPIRES]; Stable and Metastable

Vacua in Brane Constructions of SQCD, JHEP 02 (2008) 038 [arXiv:0710.1833] [SPIRES];

S. Franco, I. Garcia-Etxebarria and A.M. Uranga, Non-supersymmetric meta-stable vacua

from brane configurations, JHEP 01 (2007) 085 [hep-th/0607218] [SPIRES];

H. Ooguri and Y. Ookouchi, Meta-stable supersymmetry breaking vacua on intersecting

branes, Phys. Lett. B 641 (2006) 323 [hep-th/0607183] [SPIRES];

R. Argurio, M. Bertolini, S. Franco and S. Kachru, Metastable vacua and D-branes at the

conifold, JHEP 06 (2007) 017 [hep-th/0703236] [SPIRES];

– 36 –

http://dx.doi.org/10.1016/j.nuclphysb.2005.04.032
http://arxiv.org/abs/hep-th/0503216
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0503216
http://dx.doi.org/10.1088/1126-6708/2006/03/087
http://arxiv.org/abs/hep-th/0602120
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602120
http://dx.doi.org/10.1016/j.physletb.2005.08.096
http://arxiv.org/abs/hep-th/0506266
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506266
http://dx.doi.org/10.1088/1126-6708/2006/06/014
http://arxiv.org/abs/hep-th/0601190
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0601190
http://dx.doi.org/10.1088/1126-6708/2007/02/028
http://arxiv.org/abs/hep-th/0610297
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610297
http://dx.doi.org/10.1016/j.nuclphysb.2006.08.002
http://arxiv.org/abs/hep-th/0605232
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0605232
http://dx.doi.org/10.1088/1126-6708/2008/08/025
http://arxiv.org/abs/0807.0190
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.0190
http://dx.doi.org/10.1088/1126-6708/2006/05/015
http://arxiv.org/abs/hep-th/0602246
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602246
http://dx.doi.org/10.1088/1126-6708/2009/03/011
http://arxiv.org/abs/0809.5064
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.5064
http://dx.doi.org/10.1088/1126-6708/2008/04/015
http://arxiv.org/abs/0711.4934
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.4934
http://dx.doi.org/10.1088/1126-6708/2006/10/044
http://arxiv.org/abs/hep-th/0607077
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0607077
http://dx.doi.org/10.1103/PhysRevLett.95.231602
http://arxiv.org/abs/hep-th/0508167
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0508167
http://dx.doi.org/10.1088/1126-6708/2006/10/079
http://arxiv.org/abs/hep-th/0602253
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602253
http://dx.doi.org/10.1088/1126-6708/2006/08/007
http://arxiv.org/abs/hep-th/0605108
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0605108
http://dx.doi.org/10.1088/1126-6708/2007/05/100
http://arxiv.org/abs/hep-th/0701154
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0701154
http://dx.doi.org/10.1088/1126-6708/2007/01/078
http://arxiv.org/abs/hep-th/0609211
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0609211
http://dx.doi.org/10.1088/1126-6708/2006/04/021
http://arxiv.org/abs/hep-th/0602239
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602239
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.033
http://arxiv.org/abs/hep-th/0703135
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703135
http://dx.doi.org/10.1088/1126-6708/2008/02/038
http://arxiv.org/abs/0710.1833
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.1833
http://dx.doi.org/10.1088/1126-6708/2007/01/085
http://arxiv.org/abs/hep-th/0607218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0607218
http://dx.doi.org/10.1016/j.physletb.2006.08.035
http://arxiv.org/abs/hep-th/0607183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0607183
http://dx.doi.org/10.1088/1126-6708/2007/06/017
http://arxiv.org/abs/hep-th/0703236
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703236


J
H
E
P
1
1
(
2
0
0
9
)
0
3
9

R. Argurio, M. Bertolini, S. Franco and S. Kachru, Gauge/gravity duality and meta-stable

dynamical supersymmetry breaking, JHEP 01 (2007) 083 [hep-th/0610212] [SPIRES];

S. Franco and A.M. Uranga, Dynamical SUSY breaking at meta-stable minima from D-

branes at obstructed geometries, JHEP 06 (2006) 031 [hep-th/0604136] [SPIRES].

[11] C.P. Burgess et al., The Inflationary Brane-Antibrane Universe, JHEP 07 (2001) 047

[hep-th/0105204] [SPIRES];

G.R. Dvali, Q. Shafi and S. Solganik, D-brane inflation, hep-th/0105203 [SPIRES];

S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055]

[SPIRES];

M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505

[hep-th/0404084] [SPIRES].

[12] K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, D3/D7 inflationary model and

M-theory, Phys. Rev. D 65 (2002) 126002 [hep-th/0203019] [SPIRES];

C. Herdeiro, S. Hirano and R. Kallosh, String theory and hybrid inflation/acceleration,

JHEP 12 (2001) 027 [hep-th/0110271] [SPIRES];

M. Haack et al., Update of D3/D7-Brane Inflation on K3 × T 2/Z2,

Nucl. Phys. B 806 (2009) 103 [arXiv:0804.3961] [SPIRES];

C.P. Burgess, J.M. Cline and M. Postma, Axionic D3-D7 Inflation, JHEP 03 (2009) 058

[arXiv:0811.1503] [SPIRES].

[13] E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String

Inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [SPIRES].

[14] A. Avgoustidis, D. Cremades and F. Quevedo, Wilson line inflation,

Gen. Rel. Grav. 39 (2007) 1203 [hep-th/0606031] [SPIRES];

A. Avgoustidis and I. Zavala, Warped Wilson Line DBI Inflation, JCAP 01 (2009) 045

[arXiv:0810.5001] [SPIRES].

[15] J.J. Blanco-Pillado et al., Racetrack inflation, JHEP 11 (2004) 063 [hep-th/0406230]

[SPIRES].

[16] J.J. Blanco-Pillado et al., Inflating in a better racetrack, JHEP 09 (2006) 002

[hep-th/0603129] [SPIRES].

[17] J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP 01 (2006) 146

[hep-th/0509012] [SPIRES].

[18] J.R. Bond, L. Kofman, S. Prokushkin and P.M. Vaudrevange, Roulette inflation with Kähler

moduli and their axions, Phys. Rev. D 75 (2007) 123511 [hep-th/0612197] [SPIRES].

[19] L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from

Axion Monodromy, arXiv:0808.0706 [SPIRES].

[20] M. Cicoli, C.P. Burgess and F. Quevedo, Fibre Inflation: Observable Gravity Waves from IIB

String Compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [SPIRES].

[21] L. Covi et al., Constraints on modular inflation in supergravity and string theory,

JHEP 08 (2008) 055 [arXiv:0805.3290] [SPIRES].

[22] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of Moduli

Stabilisation in Calabi-Yau Flux Compactifications, JHEP 03 (2005) 007 [hep-th/0502058]

[SPIRES].

– 37 –

http://dx.doi.org/10.1088/1126-6708/2007/01/083
http://arxiv.org/abs/hep-th/0610212
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610212
http://dx.doi.org/10.1088/1126-6708/2006/06/031
http://arxiv.org/abs/hep-th/0604136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0604136
http://dx.doi.org/10.1088/1126-6708/2001/07/047
http://arxiv.org/abs/hep-th/0105204
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0105204
http://arxiv.org/abs/hep-th/0105203
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0105203
http://dx.doi.org/10.1088/1475-7516/2003/10/013
http://arxiv.org/abs/hep-th/0308055
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0308055
http://dx.doi.org/10.1103/PhysRevD.70.123505
http://arxiv.org/abs/hep-th/0404084
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0404084
http://dx.doi.org/10.1103/PhysRevD.65.126002
http://arxiv.org/abs/hep-th/0203019
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0203019
http://dx.doi.org/10.1088/1126-6708/2001/12/027
http://arxiv.org/abs/hep-th/0110271
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0110271
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.033
http://arxiv.org/abs/0804.3961
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.3961
http://dx.doi.org/10.1088/1126-6708/2009/03/058
http://arxiv.org/abs/0811.1503
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.1503
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://arxiv.org/abs/0803.3085
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.3085
http://dx.doi.org/10.1007/s10714-007-0454-y
http://arxiv.org/abs/hep-th/0606031
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0606031
http://dx.doi.org/10.1088/1475-7516/2009/01/045
http://arxiv.org/abs/0810.5001
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.5001
http://dx.doi.org/10.1088/1126-6708/2004/11/063
http://arxiv.org/abs/hep-th/0406230
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0406230
http://dx.doi.org/10.1088/1126-6708/2006/09/002
http://arxiv.org/abs/hep-th/0603129
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0603129
http://dx.doi.org/10.1088/1126-6708/2006/01/146
http://arxiv.org/abs/hep-th/0509012
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0509012
http://dx.doi.org/10.1103/PhysRevD.75.123511
http://arxiv.org/abs/hep-th/0612197
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0612197
http://arxiv.org/abs/0808.0706
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.0706
http://dx.doi.org/10.1088/1475-7516/2009/03/013
http://arxiv.org/abs/0808.0691
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.0691
http://dx.doi.org/10.1088/1126-6708/2008/08/055
http://arxiv.org/abs/0805.3290
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.3290
http://dx.doi.org/10.1088/1126-6708/2005/03/007
http://arxiv.org/abs/hep-th/0502058
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0502058


J
H
E
P
1
1
(
2
0
0
9
)
0
3
9

[23] J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli

spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076]

[SPIRES].

[24] K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry Breaking, R-Symmetry Breaking

and Metastable Vacua, JHEP 07 (2007) 017 [hep-th/0703281] [SPIRES].

[25] J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for

Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [SPIRES].

[26] Y. Nakayama, M. Yamazaki and T.T. Yanagida, Moduli Stabilization in Stringy ISS Models,

Phys. Lett. B 663 (2008) 281 [arXiv:0710.0001] [SPIRES].

[27] V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY

breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054]

[SPIRES].

[28] A. Westphal, de Sitter String Vacua from Kähler Uplifting, JHEP 03 (2007) 102

[hep-th/0611332] [SPIRES].

[29] S.S. AbdusSalam, J.P. Conlon, F. Quevedo and K. Suruliz, Scanning the Landscape of Flux

Compactifications: Vacuum Structure and Soft Supersymmetry Breaking,

JHEP 12 (2007) 036 [arXiv:0709.0221] [SPIRES].

[30] J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for

chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129]

[SPIRES].

[31] R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in Type IIB Orientifold

Compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [SPIRES].
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